Сталь: классификация, особенности и описание разновидностей сплава. Классификация и маркировка сталей Виды сталей и их свойства

Сталь является самым распространенным сплавом. Разнообразие областей применения обуславливает большое количество разновидностей с различными требованиями, как по механическим, так и химическим характеристикам стали. Различные марки стали подразумевают не только разнообразие химического состава, но и технологию изготовления.

В основе многообразия сплавов лежит именно химический состав металла, поскольку легирующие компоненты определяют конечный результат, а технология изготовления и обработки лишь подчеркивает и выделяет отдельные характеристики. Некоторые элементы, входящие в состав, могут ухудшать характеристики, поэтому отдельные элементы маркировки могут указывать на отсутствие или низкое содержание подобных веществ.

Расшифровка маркировки позволяет определить содержание основных элементов сплава и, отчасти, технологию производства, а также оценить технические характеристики, а с ними и область возможного применения.

Кроме различий в составе и обработке, подразделяют также категории стали по механической прочности. Насчитывается 5 категорий, которые различаются методикой испытаний на соответствие механической прочности. Испытания проводятся на растяжение и ударную вязкость контрольных образцов.

Виды сталей и особенности их маркировки

Различные области применения сталей требуют наличие у нее строго определенных свойств – физических, химических. В одном случае требуется максимально высокая износоустойчивость, в других – повышенная устойчивость против коррозии, в третьих внимание уделяется магнитным свойствам.

Видов стали много. Основная масса выплавляемого металла идет в производство конструкционной стали, в которую входят такие виды:

При расшифровке обозначений нужно учитывать, что каждому из видов соответствует строго определенная буква в маркировке.

Классификация по химическому составу

Основными легирующими добавками являются металлы. Варьируя количественный состав добавок и их массовую долю, получают большое разнообразие марок стали. Само по себе чистое железо имеет невысокие технические свойства. Малая механическая прочность, сильная подверженность коррозии, требуют введения в состав сплава дополнительных веществ, которые направлены на улучшение одного из качеств, либо сразу нескольких.

Нередко улучшение одних характеристик влечет за собой ухудшение иных. Так, высоколегированные нержавеющие стали могут иметь низкую механическую прочность, а качественные углеродистые вместе с высокой прочностью получают ослабленные коррозионные свойства.

Как уже говорилось выше, одной из классификаций марок стали является ее химический состав. Основными компонентами всех без исключения сталей являются железо и углерод, содержание которого не должно превышать 2,14 %. В зависимости от количества и пропорций добавок, содержание железа в композиции должно составлять не менее 50 %.

По количеству содержащегося углерода классифицируют три группы сталей:

  • Малоуглеродистые – содержание углерода менее 0,25 %;
  • Среднеуглеродистые – 0,25-0,6 % углерода;
  • Высокоуглеродистые, с содержанием углерода более 0,6 %.

Увеличение процентного содержания углерода повышает твердость металла, но, вместе с тем, снижается его прочность.

Для улучшения эксплуатационных качеств, в состав сплава вводят определенное количество химических элементов. Такие стали называют легированными. Для легированных сталей также существует деление на три группы:

  • Низколегированные, с содержанием добавок до 2,5 %;
  • Среднелегированные, которые содержат от 2,5 до 10 % легирующих элементов;
  • Высоколегированные. Содержание легирующих примесей варьируется от 10 до 50 %.

Маркировка сталей отражает наличие и процентное содержание легирующих добавок. При расшифровке каждому элементу соответствует определенная буква, рядом с которой находится цифра, соответствующая его содержанию в процентах. Отсутствие чисел говорит о том, что добавка присутствует в сплаве в количестве менее 1-1,5%. Наличие углерода в составе не отражается, поскольку он входит во все композиции, но его содержание обозначается в самом начале маркировки.

Маркировка может говорить и о назначении сплава. Поскольку в данной классификации также используются буквенные обозначения, то регламентируется порядок их расположения – в начале, середине и конце маркировки.

Классификация по назначению

Выше уже были приведена классификация видов сталей по назначению. Маркировка конструкционных сталей включает в себя такие обозначения:

  • Строительная – обозначается буквой С и цифрами, характеризующими предел текучести.
  • Подшипниковая – обозначается буквой Ш. Далее идет обозначение и содержание легирующих добавок, в основном, хрома.
  • Инструментальная нелегированная – обозначается буквой У и содержанием углерода в десятых долях процента.
  • Быстрорежущая – обозначается буквой Р и символами легирующих компонентов.
  • Нелегированная конструкционная сталь имеет в обозначении символы Сп и число, показывающее содержание углерода в десятых или сотых долях процента.

Остальные разновидности, в том числе и инструментальные марки из легированных сталей, не имеют специальных обозначений, кроме химического состава, поэтому расшифровку и назначение отдельных видов можно определить только по справочной литературе.

Классификация по структуре

Под структурой стали подразумевается внутреннее строение металла, которое может существенно меняться в зависимости от условий термообработки, механических воздействий. Форма и размер зерен зависят от состава и соотношения легирующих добавок, технологии производства.

Основу зерен стали составляет кристаллическая решетка железа, в которую включены атомы примесей – углерода, металлов. Углерод может образовывать твердые растворы в кристаллической решетке, а может создавать с железом химические соединения, карбиды.

Добавки металлов существуют в виде растворов, и многие из них влияют на состояние раствора углерода.

Структура стали меняется при изменениях температуры. Эти изменения называются фазами. Каждая фаза существует в определенном температурном диапазоне, но легирующие добавки могут существенно смещать границы перехода одной фазы в другую.

Насчитывают такие основные фазы состояния металла:

  • Аустенит. Атомы углерода находятся внутри кристаллической решетки железа. Данная фаза существует в диапазоне 1400-700 °С. При наличии в составе от 8 до 10% никеля, аустенитная фаза может сохраняться и при комнатной температуре.
  • Феррит. Твердый раствор углерода в железе.
  • Мартенсит. Пересыщенный раствор углерода. Данная фаза свойственна закаленной стали.
  • Бейнит. Фаза образуется при быстром охлаждении аустенита до температуры 200-500 °С. Характеризуется смесью феррита и карбида железа.
  • Перлит. Равновесная смесь феррита и карбида. Образуется при медленном охлаждении аустенита до температуры 727 °С.

Фазы строения металла характеризуют его физические свойства, в зависимости от которых определяется класс стали – конструкционная, литейная и так далее.

Классификация по качеству

Легированная и нелегированная сталь в пределах каждой марки отличается качеством, которое зависит от технологии производства и качества исходных материалов.

На качество стали особо влияют примеси, которые остаются в ней при восстановлении железа из рудных концентратов. В основном негативно влияют на качество стали фосфор и сера. По их содержанию классифицируют стали обыкновенного качества и высококачественную, в конце обозначения которой присутствует буква А. Содержание фосфора в высококачественной стали не превышает 0,025 %.

Классификация по способу раскисления

При выплавке стали в ней остается некоторое количество кислорода в составе окислов железа. Для снижения количества кислорода и восстановления железа из окислов применяется реакция раскисления, при которой в расплавленный металл добавляют соединения, более активные по взаимодействию с кислородом, чем железо. Во время реакции высвободившийся кислород также реагирует с углеродом, в результате чего образуется углекислый газ, который выделяется в виде пузырьков.

В зависимости от количества раскислителей и продолжительности процесса можно выделить три вида итогового сплава:

  • Кипящая сталь. В результате минимального использования присадок и времени реакции увеличен выход готовой продукции, которая, при этом отличается низким качеством;
  • Спокойная сталь. Металл, в котором полностью прошли процессы раскисления. Отличается высоким качеством, но дорога в производстве в связи с высокой стоимостью реагентов и сниженным выходом продукта;
  • Полуспокойная сталь. Промежуточный вариант с оптимальным сочетанием качества и стоимости.

При изготовлении ассортимента марок стали из металла разной степени раскисления применяется специальная маркировка материалов, соответственно символами «сп», «кп» и «пс».

Маркировка сталей по российским стандартам

Маркировка сталей по российским стандартам позволяет определить состав металла и, частично, принадлежность к определенному виду.

При наличии углерода в стали более 1 %, его количество в маркировке не указывается. Марка стали включает буквенные обозначения легирующих добавок с указанием их количества в десятых и сотых долях процента, но если содержание компонента менее 1,5 %, то в маркировке присутствует только буквенное обозначение.

Кроме химического состава, маркировка содержит символы, характеризующие назначение стали, степень ее качества.

Маркировка сталей по американской и европейской системам

Маркировка сталей отечественного производства и на постсоветском пространстве позволяет приблизительно определить состав, назначение и характеристики, не прибегая к справочной литературе. В американских и европейских стандартах такая расшифровка, по большей части, отсутствует. Это связано с большим количеством организаций, занимающихся стандартизацией металлопродукции.

По большей части обозначение стали по американским и европейским стандартам не содержит указаний на химический состав. Виды стали по назначению характеризуются буквенным или цифровым кодом, который можно расшифровать при помощи справочной литературы.

Только в европейском стандарте EN10027 существует вариант маркировки сплавов по химическому составу, который имеет близкое сходство с отечественными обозначениями.

Обозначения легирующих элементов

Для того чтобы по маркировке стали узнать качественный и количественный состав, для легирующих элементов используют буквенные обозначения. В основном, русские буквы соответствуют названиям элементов, хотя встречаются исключения, поскольку есть элементы, которые начинаются с одинаковых букв. Таблица легирующих элементов выглядит следующим образом.

Как видно из таблицы, в ней присутствуют два неметалла – кремний и азот, а углерода нет. Наличие углерода подразумевается в составе любой стали, поэтому в обозначении указывается лишь его содержание

Цветовая маркировка

Цветовая маркировка сталей применяется для обозначения проката. Это удобно при хранении материалов на складах, транспортировке. Обозначение сталей производится метками в виде точек или полос, выполненных несмываемой краской. Цвет обозначений выбирается из таблицы согласно назначениям стали. При этом группа стали и степень ее раскисления не учитываются.

Примеры расшифровки маркировки

Для того чтобы расшифровка была понятнее, следует привести некоторые, наиболее яркие примеры маркировки. На основании примеров, определение марки стали в сравнении с уже известными, будет являться несложной задачей. Вот некоторые виды стали с расшифровкой условных обозначений:

  • 30ХГСА – расшифровка марки стали говорит о том, что в сплаве содержится 0,3 % углерода, о чем свидетельствует цифра в начале обозначения. Сталь содержит хром (Х), марганец (Г), кремний (С), но их содержание менее 1,5 %. Символ «А» в конце обозначения говорит о том, что сталь высококачественная.
  • У8ГА – инструментальная сталь с содержанием углерода 0,8 %. Высококачественная с добавлением марганца.
  • Р6М5Ф2К8 – быстрорежущая сталь. Содержит 5 % молибдена, 2 % ванадия, 8 % кобальта. Хром содержится во всех быстрорежущих сталях в количестве около 4 %, поэтому в обозначение не входит. Вольфрам также всегда присутствует, но его содержание может изменяться, поэтому в данной марке его количество составляет 6 %.
  • Ст3сп5 – сталь конструкционная нелегированная, полностью раскисленная – спокойная, 5-й категории, то есть может применяться для изготовления несущих сварных конструкций.
  • ХВГ – сталь ХВГ имеет в составе хром, вольфрам и марганец в количестве около 1 % и дополнительные легирующие элементы, но их содержание меньше 0,5 %.

Сталь - распространенный машиностроительный материал.

Под сталью понимают сплавы железа с углеродом, содержащие от 0,02 до 2,14 % С. Помимо углерода в сталях присутствуют постоянные примеси Mn , Si, S , Р и др., которые оказывают влияние на ее свойства. Стали классифицируют по химическому составу, по качеству и по применению.

По химическому составу различают углеродистые и легированные стали. По содержанию углерода те и другие подразделяют на низко (менее 0,25% С), средне - (0,30 - 0,70% С) и высокоуглеродистые (более 0,7% С). В зависимости от суммарного содержания легирующих элементов различают низко (менее 5 %), средне - (5,0 -10,0%) и высоколегированные (более 10,0%) стали.

По качеству различают стали обыкновенного качества, качественные, высококачественные и особовысококачественные. Эта классификация определяет условия металлургического производства сталей и прежде всего содержание в них вредных примесей.

К сталям обыкновенного качества относят углеродистые, содержащие до 0,6% - С, до 0,060% - S и до 0,070% - Р. Из них изготавливают горячекатаный сортовой прокат: балки, прутки, швеллеры, уголки, трубы и т.п., а также холоднокатаную листовую сталь.

В соответствии с ГОСТ 380-88 выпускаются три группы (А, Б и В) сталей обыкновенного качества.

В группу А входят стали, поставляемые по механическим свойствам без уточнения их химического состава. Стали этой группы обозначаются буквами Ст (сталь) и цифрами 0, 1, 2...6.

Чем больше число, тем выше содержание углерода и прочность (σ в, МПа) и ниже пластичность (δ,%). Эти стали используют в состоянии поставки без последующей горячей обработки давлением или термической обработки. Примерами стали этой группы могут служить марки: Ст0, Ст1, Ст4.

Группа Б - стали, поставляемые с гарантированным химическим составом.. В обозначение марки стали этой группы впереди ставится буква Б, например, БСт0, БСт1 и т.д.

Группа В представляет стали, поставляемые с гарантированным химическим составом и механическими свойствами. В обозначение марки стали этой группы вводится группа В, например, ВСт1, ВСт5. Химический состав стали такой же, как у соответствующей марки группы Б, а механические свойства такие же, как у группы А.

Стали групп Б и В применяют в случаях, когда сталь необходимо подвергать горячей деформации или упрочнять термической обработкой.

Стали обыкновенного качества распределяются, кроме того, на спокойные, полуспокойные и кипящие.

Спокойные стали раскисляют в процессе плавки марганцем, кремнием, алюминием, титаном. В них содержится минимальное количество кислорода и различных окислов. Содержание кремния обычно 0,15 - 0,35 % . Спокойные стали обозначают буквами "сп", например, Ст3сп, БСт5сп, ВСт4сп и т.д.

Кипящие стали раскисляют в процессе плавки только марганцем, содержание кремния не более 0,1% (следы). Перед разливкой в них содержится повышенное количество кислорода, который взаимодействуя с углеродом образует пузырьки СО. Выделение пузырьков из металла создает впечатление, что он кипит. Часть их остается в металле, образуя его сотовидное строение. Кипящие стали обозначаются дополнительно буквами "кп", например, БСтЗкп, Ст2кп, ВСт4кп.

Полуспокойные стали по степени раскисления занимают промежуточное положение между спокойными и кипящими и содержат до 0,17% кремния (предварительно раскисляются марганцем). Полуспокойные стали обозначаются дополнительно буквами "пс", например, Ст1пс, Ст2пс, ВСт5пс и т.д. Благодаря большей однородности по сравнению с кипящей сталью полуспокойная сталь имеет свойства, близкие к свойствам спокойной стали. Спокойная сталь применяется для производства проката и фасонных отливок; полуспокойная и кипящая - для проката.

Качественные стали. По химическому составу это углеродистые легированные стали, содержание серы и фосфора в которых не должно превышать 0,035% каждого. Колебания в содержании углерода пределах марки не должно превышать 0,08 %.

Высококачественные стали. Это углеродистые и легированные стали, выплавляемые преимущественно в электрических и кислых мартеновских печах. Содержание серы и фосфора не более 0,025% каждого, а колебания углерода в пределах марки не более 0,07%.

Стали особовысококачественные - это легированные стали, выплавляемые в электрических печах с электрошлаковым переплавом содержат серу и фосфор не более 0,015% каждого.

По применению различают следующие классы сталей: строительные, машиностроительные общего назначения, машиностроительные специального назначения, инструментальные, с особыми химическими и физическими свойствами. В настоящей работе ограничимся рассмотрением строительных, машиностроительных общего назначения и инструментальных сталей, а остальные будут изучаться курсе "Материаловедение".

Маркировка строительных и машиностроительных сталей общего назначения. Маркировка углеродистых сталей обыкновенного качества была рассмотрена выше.

Качественные углеродистые стали по ГОСТ 1050-88 маркируются цифрами 08, 10, 15, 20... 85, которые указывают среднее содержание углерода в сотых долях процента. В зависимости от степени раскисления эти стали могут быть спокойными или кипящими (08 и 08кп, 10 и 10кп).

Легированные стали маркируются цифрами и буквами, например, 15Х; 45ХФ; 18ХГТ; 12ХН3А; 20Х2Н4А; 14Г2 25Г2С и т.д. Двузначные цифры в начале марки указывают среднее содержание углерода в сотых долях процента; буквы справа от цифры обозначают легирующий элемент: А - азот, Б - ниобий, В - вольфрам, Г – марганец, Д- медь, К - кобальт, Н - никель, М - молибден, П - фосфор, Р - бор, С – кремний, Т - титан, Ф - ванадий, Х - хром, Ц " цирконий, Ю – алюминий, У - редкоземельный. Цифры после буквы (символа элемента) указывают примерное содержание соответствующего легирующего элемента в целых процентах, отсутствие цифры указывает, что оно составляет около 1 % и менее. Буква А в конце обозначения указывает, что сталь высококачественная (12ХИ3А), вначале - сталь автоматная (А15, А30), в середине - азот. У сталей, применяемых в литом виде, в конце марки ставится буква Л (например, 25Л, 35ГЛ).

Строительная сталь применяется для сварных конструкций, магистральных нефтегазопроводов, для армирования железобетонных конструкций и т.п. Для этих целей широко применяются низкоуглеродистые и низколегированные качественные стали, и стали обыкновенного качества (ВСтЗсп, ВСт3Гпс, ВСт5Гпс, 14Г2, 17ГС, 15ХСНД и др.).

Машиностроительная сталь общего назначения делится на три группы: стали, используемые без упрочняющей термической обработки; цементуемые низкоуглеродистые (до 0,25% С) и улучшаемые среднеуглеродистые (от 0,30-0,50% С) стали. Это, как правило, углеродистые и низколегированные стали.

Стали, используемые без упрочняющей термической обработки. Это стали, поставляемые в листах для последующей штамповки, глубокой вытяжки и т.п. По химическому составу стали низкоуглеродистые с пониженным содержанием кремния (кп, пс) и низколегированные (08кп, 08пс, 15кп, 20Хкп идр.).

Цементуемые стали применяются для изделий, подвергаемых поверхностному насыщению углеродом. После цементации, закалки и низкого отпуска детали из этих сталей имеют твердую поверхность (HRC 58-62), хорошо работающие на износ, и вязкую прочную сердцевину (HRC 20-30). Для мелких неответственных изделий широко применяют стали марок 10, 15, 20, 15Х, 20Х. Для более ответственных и крупных изделий применяют легированные качественные и высококачественные стали, например, 18ХГТ, 12ХН3А, 20Х2Н4А, 20ХГР, 18Х2Н4ВА и т.п.

Улучшаемые машиностроительные стали применяют после закалки и высокого отпуска (улучшения). Для изделий небольшого сечения или работающих при невысоких нагрузках используют стали марок 35, 40, 45, 50. Для деталей более крупного сечения применяют низко и среднелегированные стали, обладающие большой прокаливаемостью и обеспечивающие высокие механические свойства по всему сечению, например, 40Х, 30ХГТ, 50Г2 , 40ХН, 40ХНМА, ЗОХН2ВФ и др.

Инструментальные стали предназначены для изготовления режущего, мерительного, холодноштампового и горячештампового инструмента. Это, как правило, высокоуглеродистые стали, содержащие свыше 0,70% С (исключение составляют стали для горячештампового инструмента, которые относятся к среднеуглеродистым сталям). К ним относятся качественные и высококачественные стали, углеродистые, легированные и быстрорежущие. Они имеют соответствующую маркировку.

Углеродистые инструментальные стали обозначаются буквой У и цифрами, показывающими среднее содержание углерода в десятых долях процента (У7, У8, У10, У12А и т.п.).

Легированные инструментальные стали 9ХС, X, 5ХВГ, 3Х8В2 и т.д. маркируют цифрой, показывающей среднее содержание углерода в десятых долях процента, если его меньше 1,0 %. Если содержание углерода 1,0 % и выше, то цифра чаще всего отсутствует. Буквы означают легирующие элементы (см. выше), а следующие за ними цифры - содержание в целых процентах соответствующего легирующего элемента.

Быстрорежущие стали маркируют буквой Р (Р14Ф4). Следующая за ней цифра указывает содержание основного легирующего элемента (вольфрама) в целых процентах. Содержание углерода в быстрорежущих сталях 0,75-1,15 %, хрома - 3,8-4,2 % в обозначении марки стали не указываются. Кроме того, во всех быстрорежущих сталях присутствует ванадий; если его меньше 2,2 % , то в марке он не указывается.

Для режущего инструмента применяют углеродистые стали У8,У10, У8А,У12 ГОСТ 1435-90, легированные 9ХС, ХВГ, Х (ГОСТ 5950-73), а также быстрорежущие высоколегированные стали марок Р18, Р12, Р6МЗ, Р6М5, Р10К5 (ГОСТ 19265-73). Отличительная особенность инструментальных сталей для режущего инструмента - высокое содержание углерода (от 0,70 до 1,5 %), что позволяет получать после закалки и отпуска высокую твердость ИКС 60-65.

Для изготовления холодноштампового инструмента часто используют стали для режущего инструмента углеродистые и легированные. Это объясняется тем, что условия работы вырубных штампов и режущего инструмента очень близки. Лучшие стали для холодноштампового инструмента – X12Ф1, Х12М, Х6ВФ и т.п.

Стали для штампов, деформирующих металл в горячем состоянии должны иметь высокие механические свойства (прочность, вязкость) при повышенных температурах и обладать разгаростойкостъю, т.е. выдерживать многократные нагревы и охлаждения (термоциклы) без образования трещин. Это, как правило, низко- и среднелегированные стали, содержащие углерод от 0,35 до 0,60 %, такие как 5ХНМ, 5ХНМА, 4Х5В2ФС, ЗХ2В8Ф и др.

Стали для измерительного инструмента должны обладать высокой твердостью, износостойкостью и сохранять постоянство размеров. Для этой цели обычно применяют высокоуглеродистые низколегированные стали марок Х, 9ХС, ХВГ и др. Кроме того, для плоского инструмента (линейки, скобы, шаблоны и др.) часто используют низкоуглеродистые конструкционные стали 15, 15Х, 20Х и др., подвергаемые поверхностному насыщению углеродом с последующей закалкой.

По прочностным свойствам стали условно делят на три груп­пы: обычной прочности (s y < 29 кН/см 2); повышенной прочности (29 кН/см 2 ≤ s y < 40 кН/см 2); высокой прочности (s y ≥ 40 кН/см 2). Повышение прочности стали достигается легированием и терми­ческой обработкой.

Стали обычной прочности (s y < 29 кН/см 2). К этой группе отно­сят низкоуглеродистые стали (С235...С285) различной степени раскисления, поставляемые в горячекатаном состоянии. Обладая отно­сительно небольшой прочностью, эти стали очень пластичны: протяженность площадки текучести составляет 2,5 % и более, соотношения s y / s u 0,6...0,7. Хорошая свариваемость обес­печивается низким содержанием углерода (не более 0,22 %) и крем­ния. Коррозионная стойкость - средняя, поэтому конструкции, вы­полненные из сталей обычной прочности, следует защищать с по­мощью лакокрасочных и других покрытий. Однако благодаря невысокой стоимости и хорошим технологическим свойствам стали обычной прочности очень широко применяют для строительных ме­таллических конструкций. Потребление этих сталей составляет свы­ше 50% от общего объема. Недостатком низкоуглеродистых сталей является склонность к хрупкому разрушению при низких температу­рах (особенно для кипящей стали С235), поэтому их применение в конструкциях, эксплуатирующихся при низких отрицательных тем­пературах, ограничено.

Стали повышенной прочности (29 кН/см 2 ≤ s y < 40 кН/см 2). Ста­ли повышенной прочности (С345...С390) получают либо введением при выплавке стали легирующих добавок (в основном марганца и кремния, реже никеля и хрома), либо термоупрочнением низкоуглеродистой стали (С345Т). Пластичность стали при этом несколько снижается и протяженность площадки текучести уменьшается до 1...1,5%.

Стали повышенной прочности хуже свариваются (особенно стали с высоким содержанием кремния) и требуют иногда использования специальных технологических мероприятий для пре­дотвращения образования горячих трещин.

По коррозионной стойкости большинство сталей этой группы близки к малоуглеродистым сталям. Более высокой коррозионной стойкостью обладают стали с повышенным содержанием меди (С345Д, С375Д, С390Д).

Высокое значение ударной вязкости сохраняется при температу­ре -40°С и ниже, что позволяет использовать эти стали для конст­рукций, эксплуатируемых в северных районах. За счет более высоких прочностных свойств применение сталей повышенной прочности приводит к экономии металла до 20...25%.

Стали высокой прочности (s y ≥ 40 кН/см 2). Прокат из стали вы­сокой прочности (С440...С590) получают леги­рованием и термической обработкой. Для легирования используют нитридообразующие элементы, способствующие образованию мел­козернистой структуры.

Стали высокой прочности могут не иметь площадки текучести (при s y ≥ 50 кН/см 2), и их пластичность (относительное удлинение) снижается до 14% и ниже. Отношение s y / s u увеличивается до 0,8...0,9, что не позволяет учитывать при расчете конструкций из этих сталей пластические деформации.

Подбирая химический состав и режим термообработки, можно значительно повысить сопротивление хрупкому разрушению и обеспечить высокую ударную вязкость при температурах до - 70°С. Однако высокая прочность и низкая пластичность сталей требуют более мощного оборудования для резки, правки, сверления и других операций.

При сварке термообработанных сталей вследствие неравномер­ного нагрева и быстрого охлаждения в разных зонах сварного соеди­нения происходят различные структурные превращения. На одних участках образуются закалочные структуры, обладающие повышенной прочностью и хрупкостью (жесткие прослойки), на других ме­талл подвергается высокому отпуску и имеет пониженную прочность и высокую пластичность (мягкие прослойки).

Разупрочнение стали в околошовной зоне может достигать 5...30 %, что необходимо учитывать при проектировании сварных конструкций из термообработанных сталей. Эффект разупрочнения снижает введение в состав стали некоторых карбидообразующих элемен­тов (молибден, ванадий).

Применение сталей высокой прочности приводит к экономии металла до 25...30 % по сравнению с конструкциями из низкоуглеро­дистых сталей и особенно целесообразно в большепролетных и мощных конструкциях.

Атмосферостойкие стали. Для повышения коррозионной стойко­сти металлических конструкций применяют низколегированные ста­ли, содержащие в небольшом количестве (доли процента) такие эле­менты, как хром, никель и медь.

В конструкциях, подвергающихся атмосферным воздействиям, весьма эффективны стали с добавкой фосфора (например, сталь С345К). На поверхности таких сталей образуется тонкая оксидная пленка, обладающая достаточной прочностью и защищающая металл от развития коррозии. Однако свариваемость стали при наличии фосфора ухудшается. Кроме того, в прокате больших толщин металл обладает пониженной хладостойкостью, поэтому применение стали С345К рекомендуют при толщинах не более 10 мм.

В конструкциях, совмещающих несущие и ограждающие функ­ции (например, мембранные покрытия), широко используют тонко­листовой прокат. Для повышения долговечности таких конструкций целесообразно применение нержавеющей хромистой стали марки ОХ18Т1Ф2, не содержащей никеля. В больших толщинах прокат из хромистых сталей обладает повышенной хруп­костью, однако свойства тонколистового проката (особенно толщи­ной до 2 мм) позволяют применять его в конструкции при расчет­ных температурах до -40°С.

По химическому составу стали подразделяют на углеродистые и легированные.Углеродистые стали состоят из железа и углерода с некоторой добавкой кремния (или алюминия) и марганца. Прочие добавки (медь, хром и т.д.) специально не вво­дятся и могут попасть в сталь из руды.

Углерод , повышая прочность стали, снижает ее пластичность и ухудшает свариваемость, поэтому для строительных металлических конструкций применяют только малоуглеродистые стали с содер­жанием углерода не более 0,22 %.

В состав легированных сталей помимо железа и углерода входят специальные добавки, улучшающие их качество. Поскольку боль­шинство добавок в той или иной степени ухудшают свариваемость стали, а также удорожают ее, в строительстве в основном применяют низколегированные стали с суммарным содержанием легирующих добавок не более 5 %.

В зависимости отвида поставки стали подразделяются на:

Горячека­таные;

Термообработанные (нормализованные или термически улучшенные).

В горячекатаном состоянии сталь далеко не всегда об­ладает оптимальным комплексом свойств. При нормализации из­мельчается структура стали, повышается ее однородность, увеличи­вается вязкость, однако существенного повышения прочности не происходит. Термическое улучшение (закалка в воде и высокотемпе­ратурный отпуск) позволяют получить стали высокой прочности, хорошо сопротивляющиеся хрупкому разрушению.

По степени раскисления стали могут быть кипящими , полуспокой­ными, спокойными.

Нераскисленные стали кипят при разливке вследствие выделения газов: такая сталь носит название кипящей и оказывается более за­соренной газами и менее однородной.

Степень раскисления обозначается буквами: кп - кипящая; сп - спокойная; пс - полуспокойная.

Кипящие стали, имея достаточно хорошие показатели по пределу текучести и временному сопротивлению, ху­же сопротивляются хрупкому разрушению и старению.

Чтобы повысить качество низкоуглеродистой стали, ее раскисляют добавками кремния от 0,12 до 0,3 % или алюминия до 0,1 %. Кремний (или алюминий), соединяясь с растворенным кислородом, уменьшает его вредное влияние. Кроме того, при соединении с ки­слородом раскислители образуют силикаты и алюминаты, которые увеличивают число очагов кристаллизации и способствуют образо­ванию мелкозернистой структуры стали, что ведет к повышению ее качества и механических свойств. Раскисленные стали не кипят при разливке в изложницы, поэтому их называют спокойными . Спокойная сталь более однородна, лучше сва­ривается, лучше сопротивляется динамическим воздействиям и хрупкому разрушению. Ее применяют при изготовлении ответствен­ных конструкций, подвергающихся статическим и динамическим воздействиям.

Спокойные стали примерно на 12 % дороже кипящих, что несколько ограничивает их применение.

Полуспокойная сталь по качеству является промежуточной меж­ду кипящей и спокойной. Ее раскисляют меньшим количеством кремния – 0,05...0,15 % (редко алюминием). По стоимости полуспокойные стали также занимают промежуточное положение. Низколегированные стали поставляют в основном спо­койной (редко полуспокойной) модификации.

8.7. Нормирование сталей .

Основным стандартом, регла­ментирующим характеристики сталей для строительных металличе­ских конструкций, является ГОСТ 27772 - 88. Согласно ГОСТу, фа­сонный прокат изготовляют из сталей С235, С245, С255, С275, С285, С345, С345к, С375, для листового и универсального проката и гну­тых профилей используются также стали С390, С390К, С440 и С590К. Стали С345, С375, С390 и С440 могут поставляться с повы­шенным содержанием меди (для улучшения коррозионной стойко­сти) при этом к обозначению стали добавляют букву Д.

Буква С в наименовании означает сталь строительную, цифра показывает значе­ние предела текучести в МПа, буква К - вариант химического состава.

Прокат поставляют как в горячекатаном, так и в термообработанном состоянии. Выбор варианта химического состава и вида тер­мообработки определяется заводом. Например, листовой прокат стали С345 может изготовляться из стали с химическим составом С245 с термическим улучшением. В этом случае к обозначению стали добавляют букву Т, например С345Т;

В зависимости от температуры эксплуатации конструкций и сте­пени опасности хрупкого разрушения испытания на ударную вяз­кость для сталей С345 и С375 проводятся при разных температурах, поэтому они поставляются четырех категорий, а к обозначению ста­ли добавляют номер категории, например С345-1, С375-2.

Оценку свариваемости стали проводят по углеродному эквива­ленту (%):

где С, Mn, Si, Cr, Ni, Си, V и Р - массовая доля углерода, марганца, кремния, хрома, никеля, меди, ванадия и фосфора, %.

Если С э < 0,4%, то сварка стали не вызывает затруднений, при 0,4%<Сэ<0,55% сварка возможна, но требует принятия специальных мер по предотвращению возникновения трещин. При Сэ > 0,55% опасность появления трещин резко возрастает.

Отличительной особенностью ГОСТ 27772 - 88 является использование для некоторых сталей (С275, С285, С375) статистических методов контроля, что гарантирует обеспеченность нормативных значений предела текучести и временного сопротивления.

Строительные металлические конструкции изготовляют также из сталей, поставляемых по ГОСТ 380 - 88* "Сталь углеродистая обык­новенного качества", ГОСТ 19281 - 89 " Прокат из стали повышен­ной прочности. Общие технические условия." и другим стандартам.

Различий между свойствами стали, имеющими одинаковый химический состав, но поставляемым по разным стандартам, нет. Разница в способах контроля и обозначениях. Так, по ГОСТ 380-88* в обозначении марки стали

указываются группа по­ставки, способ раскисления и категория.

При поставке по группе А завод гарантирует механические свойства, по группе Б - химический состав, по группе В - механические свойства и химический состав.

Для малоуглеродистых сталей в зависимости от вида испытаний на ударную вязкость установлено 6 категорий: категории 1 ,2 - испы­тания на ударную вязкость не проводят, 3 - проводят при t = +20°С, 4 - при -20°С, 5 - при -20°С и после механического старения, 6 - по­сле механического старения.

Все эти факторы указывают в марке стали. Так, например, ВСтЗпсб - это сталь 3, полуспокойная, с гарантией в пределах вели­чин, установленных стандартом для этой стали, механических харак­теристик, химического состава и ударной вязкости после механиче­ского старения. В строительстве в основном используют стали марок ВСтЗкп2, ВСтЗпсб и ВСтЗсп5, а также сталь с повышенным содер­жанием марганца ВСтЗГпс5.

Стали, поставляемые по разным стандартам, взаимозаменяемы. Так, сталь С235 соответствует стали ВСтЗкп2, сталь С245 - ВСтЗпсб, сталь С255 - ВСтЗсп5. Рекомендации по такой замене приведены в нормах проектирования.

Сталью называется сплав железа с углеродом, в котором массовая доля углерода составляет 2,14 % (теоретически). На практике концентрация углерода составляет не более 1,5 %. Кроме углерода в стали находятся постоянные примеси: кремний, марганец, сера, фосфор и другие химические элементы. Производство стали заключается во вторичной переработке передельного белого чугуна различными способами: мартеновским, конвертерным, электроплавкой и др. Сущность производства стали заключается в удалении углерода и других химических элементов в процессе плавки шихты, состоящей из жидкого или чушкового чугуна, стального лома, железной руды и известняка. Плавку производят в различных сталелитейных агрегатах: мартеновских печах, конвертерах, электродуговых, электроиндукционных и в других металлургических агрегатах.

Сталь также является основным конструкционным материалом в машиностроении и других отраслях промышленного производства.

В обычных условиях применяются простые углеродистые стали; при высокой температуре и активной среде - специальные легированные стали (например, для изготовления насоса для перекачки кислот, механизмов, работающих в морской воде и Т.Д.).

В связи с этим черная металлургия нашей страны выпускает стали с различными физико-химическими и механическими свойствами. Все отрасли промышленности получают от металлургов стали различных марок, сортаментов и наименований. Запомнить это многообразие сталей, поставляемых металлургами, практически невозможно, поэтому наука о металлах - металловедение - классифицирует все выпускаемые стали по различным признакам (рис. 5.10).

По химическому составу стали подразделяются на две большие группы: углеродистые и легированные.

Рис. 5.10.

Углеродистые стали в своем составе содержат железо, углерод и постоянные примеси, присущие железоуглеродистым сплавам. Другие химические элементы в углеродистых сталях отсутствуют. Углеродистые стали по массовой доле углерода подразделяются на низкоуглеродистые (до 0,3 % углерода), среднеуглеродистые (0,3...0,6 % углерода) и высокоуглеродистые (более 0,6 % углерода).

Легированные стали, кроме углерода, содержат различные химические элементы, как металлы, так и неметаллы. Эти элементы вводятся в процессе плавки для получения более высоких физико-химических и механических свойств по сравнению с углеродистыми сталями. Легировать - значит сплавлять, соединять, поэтому химические элементы, вводимые в сталь, называются легирующими элементами, а стали, сплавленные с ними, получили название легированных сталей.

Качество сталей зависит от особенностей металлургических процессов, перерабатываемого сырья, вида плавки и других факторов, определяющих химический состав сталей и наличие в них вредных примесей - серы и фосфора, а также различных газов: азота, водорода и кислорода. Вредные примеси и присутствующие в них газы придают сталям отрицательные физико-химические, механические и технологические свойства, т.е. ухудшают их качество. В связи с этим по качеству стали, как углеродистые, так и легированные, делятся на четыре группы: стали обыкновенного качества, качественные, высококачественные, особовысококачественные.

Стали обыкновенного качества содержат 0,045...0,060 % серы, 0,04...0,07 % фосфора.

Качественные стали изготавливаются с массовой долей серы не более 0,04 %, фосфора - 0,035...0,040 %. Качественные стали бывают как углеродистые, так и легированные.

Высококачественные углеродистые и легированные стали содержат не более 0,02 % серы и 0,03 % фосфора.

Особовысококачественные стали имеют массовую долю серы не более 0,015 %, фосфора - не более 0,025 %. Легированные особовысококачественные стали получают методами электро- шлакового или вакуумно-дугового переплава.

По назначению углеродистые и легированные стали подразделяются на конструкционные, инструментальные и специальные.

Конструкционные стали, как углеродистые, так и легированные, идут на изготовление различных деталей машин, сварных строительных конструкций и т. п. К этим сталям предъявляются определенные требования по химическому составу, механическим, технологическим, эксплуатационным и химическим свойствам. Это могут быть цементуемые, улучшаемые и высокопрочные стали. Одни из этих сталей подвергаются химико-термической обработке, другие - только термической обработке. По технологическим признакам конструкционные стали подразделяются на штампуемые, свариваемые, литейные и высокой обрабатываемости резанием (автоматные). По назначению эти стали могут быть рессорно-пружинные, шарикоподшипниковые, магнитные, электротехнические, строительные и др.

Стали этой группы по химическим свойствам подразделяются на нержавеющие, кислотостойкие, окалиностойкие и др., а в зависимости от химической стойкости они бывают конструкционные и специального назначения.

К конструкционным углеродистым сталям относятся стали обыкновенного качества (марок СтО, Ст1 и т.д.), а также качественные стали (марок 05, 10, 15 и т.д.). К легированным конструкционным сталям относится большая группа низко- и среднелегированных сталей, подвергаемых химико-термической и термической обработке (например, 20Х, 15Г, 15ХФ, 40Х, 45ХН и др.).

Инструментальные углеродистые и легированные стали идут на изготовление режущего, измерительного и ударного инструмента, штампов для деформирования в горячем и холодном состоянии. К этим сталям предъявляются высокие требования по прокаливаемое™, красностойкости, стойкости (время работы от заточки до заточки) и др.

Специальные легированные стали - это, как правило, конструкционные материалы со специальными свойствами. К ним относятся нержавеющие (коррозионно-стойкие), жаростойкие, магнитные, электротехнические, с высоким электрическим сопротивлением, теплостойкие и другие стали. Эту группу составляют высоколегированные стали, имеющие массовую долю легирующих элементов свыше 10 %. Для легирования применяют хром, никель, марганец и т.д. Применение тех или иных легирующих элементов определяется требуемыми свойствами. Например, коррозионно-стойкие стали должны иметь массовую долю хрома не менее 13 %, жаростойкие - в зависимости от требуемой температуры - 9... 17 % хрома, 2 % кремния. Отдельные марки, кроме того, содержат никель или титан (например, 40Х9С2, 06Х17Г и др.).

По способу раскисления стали подразделяются на три категории: кипящие, спокойные и полуспокойные.

Раскисление - это процесс удаления из стали в жидком состоянии оксида железа (ИеО), который образуется в процессе плавки и придает стали активную склонность к коррозии. Кроме того, в процессе раскисления из стали в жидком состоянии удаляются азот и водород. Раскисление проводят путем добавки перед выпуском стали в разливочный ковш кремния, марганца или алюминия в зависимости от требуемой степени раскисления.

Практически установлено, что при наличии в стали кислорода, вступившего в реакцию с железом (РеО), при горячей деформации образуется высокая хрупкость. Кроме того, оксид железа способствует понижению прочности при отрицательных температурах и образует высокую склонность к межкристаллит- ной коррозии.

Кипящие стали раскисляют марганцем. При охлаждении стали в изложницах выделяются газы, которые создают ложное впечатление, что сталь при затвердевании кипит. Кипящие стали производят как обыкновенного качества, так и качественными. Как правило, эти стали бывают низкоуглеродистыми.

Спокойные стали раскисляют алюминием, марганцем и кремнием. В этих сталях кислород практически полностью вступает в реакцию с раскислителями, всплывает наверх и удаляется со шлаком. При охлаждении они затвердевают спокойно, без газо- выделения. Все легированные качественные и углеродистые стали выпускаются спокойными.

Полуспокойные стали занимают промежуточное положение между кипящими и спокойными сталями. Их раскисляют марганцем и алюминием. Полуспокойные стали выпускают только углеродистыми.

На структуру стали большое влияние оказывают массовая доля углерода, легирующие элементы и состояние поставки. В связи с этим по структуре стали классифицируются в отожженном (равновесном) и нормализованном состоянии.

В отожженном состоянии структура сталей делится на шесть классов:

  • доэвтектоидные - структура феррита и перлита;
  • эвтектоидные - структура перлита;
  • заэвтектоидные - структура перлита и цементита;
  • ледебуритные - структура первичного ледебурита или карбида;
  • аустенитные - структура твердых растворов, перенасыщенных углеродом;
  • ферритные - структура твердых растворов со слабо насыщенным углеродом.

Углеродистые стали имеют структуру первых трех классов, легированные - всех шести классов. Ледебуритные, аустенитные и ферритные классы структур образуются при введении в состав никеля, ванадия, вольфрама и других легирующих элементов. При определенном сочетании возможно образование промежуточных классов структур, например полуферритных, полуаустенитных и др.

В нормализованном состоянии стали имеют четыре класса структур: ферритные, перлитные, мартенситные и аустенитные.

Структура стали ферритного класса неустойчивая. В зависимости от скорости охлаждения на воздухе эта сталь может приобрести структуру перлита, троостита или сорбита. К ферритному классу относятся все углеродистые и низколегированные стали.

Низкоуглеродистые стали с массовой долей углерода до 0,15 %, легированные хромом (12... 15 %), образуют устойчивую структуру феррита. При нагревании и охлаждении этот класс сталей свою структуру не меняет.

Стали мартенситного класса имеют высокую устойчивость, при охлаждении образуют твердую мелкодисперсную структуру. К этому классу относятся средне- и высоколегированные стали.

Стали аустенитного класса образуются при высокой массовой доле никеля и марганца в сочетании с хромом. Стали этого класса имеют высокую ударную вязкость.

Классификация сталей по химическому составу

По химическому составу стали подразделяют на:

При определении степени легирования содержание углерода во внимание не принимают, марганец и кремний считаются легирующими элементами при их содержании более 1 и 0,8 % соответственно.

Классификация сталей по структуре

Структура стали – менее устойчивый классификационный признак, так как зависит от скорости охлаждения (толщины стенки отливок), степени легирования, режима термообработки и других изменяющихся факторов, но структура готового изделия позволяет объективно оценивать его качество.

Стали по структуре классифицируют в состояниях после отжига и нормализации.

В отожженном состоянии стали подразделяют на:

  • доэвтектоидные – имеющие в структуре избыточный феррит
  • эвтектоидные – структура которых состоит из перлита
  • заэвтектоидные – в структуре которых имеются вторичные карбиды, выделяющиеся из аустенита
  • ледебуритные – в структуре которых содержатся первичные (эвтектические) карбиды
  • аустенитные
  • ферритные

После нормализации стали подразделяют на следующие структурные классы:

  • перлитный
  • аустенитный
  • ферритный

Классификация сталей по назначению

Конструкционные – стали, предназначенные для изготовления деталей машин и элементов строительных конструкций.

Конструкционные стали подразделяются на:

  • обыкновенного качества;
  • улучшаемые;
  • цементируемые;
  • автоматные;
  • высокопрочные;
  • рессорно-пружинные.

Инструментальные – стали, применяемые при изготовлении режущих и измерительных инструментов.

Инструментальные стали подразделяются на подгруппы по изготовлению:

  • для режущего инструмента;
  • для измерительного инструмента;
  • для штампово-прессовой оснастки.

Специального назначения – стали с особыми физическими и механическими свойствами.

Стали специального назначения подразделяются на:

  • нержавеющие (коррозионно-стойкие);
  • жаростойкие;
  • жаропрочные;
  • износостойкие;
  • магнитные;
  • немагнитные и т.д.

Классификация сталей по качеству

По качеству стали классифицируются на:

  • обыкновенного качества – содержащие до 0,06 % серы и 0,07 % фосфора;
  • качественные – содержащие до 0,035 % серы и 0,035 % фосфора;
  • высококачественные – содержащие не более 0,025 % серы и 0,025 % фосфора;
  • особо высококачественные – содержащие не более 0,015 % серы и 0,025 % фосфора.

Под качеством понимается совокупность свойств стали, определяемых металлургическим процессом ее производства (способ выплавки). Однородность химического состава, строение и свойства стали зависят от содержания вредных примесей и газов.

Классификация сталей по степени раскисления

По степени раскисления стали классифицируют на:

  • спокойные (сп);
  • полуспокойные (пс);
  • кипящие (кп).

Раскислением называют процесс удаления кислорода из жидкой стали.

Спокойные стали раскисляют марганцем, алюминием и кремнием в плавильной печи и ковше. Они затвердевают в изложнице спокойно, без газовыделения, с образованием в верхней части слитков усадочной раковины.

Дендритная ликвация вызывает анизотропию механических свойств. Пластические свойства стали в поперечном (по отношению к направлению прокатки или ковки сечении значительно ниже, чем в продольном.

Зональная ликвация приводит к тому, что в верхней части слитка содержание серы, фосфора и углерода увеличивается, а в нижней – уменьшается. Это приводит к значительному ухудшению свойств изделия из такого слитка, вплоть до отбраковки.

Кипящие стали раскисляют только марганцем, что недостаточно. Перед разливкой в них содержится повышенное количество кислорода, который при затвердевании слитка частично реагирует с углеродом и выделяется в виде газовых пузырей окиси углерода, создавая впечатление «кипения» стали.

Кипящая сталь практически не содержит неметаллических включений продуктов раскисления. Эти стали выплавляют низкоуглеродистыми и с очень малым содержанием кремния (менее 0,07 %), но с повышенным количеством газообразных примесей. При прокатке слитков газовые пузыри, заполненные окисью углерода, завариваются. Листовой прокат из такой стали предназначен для изготовления деталей кузовов автомобилей вытяжкой, имеет хорошую штампуемость в холодном состоянии.

Полуспокойные стали по степени их раскисления занимают промежуточное положение между спокойными и кипящими сталями. Частично их раскисляют в плавильной печи и в ковше, а окончательно – в изложнице за счет содержащегося в металле углерода. Ликвация в слитках полуспокойной стали меньше, чем в кипящей, и приближается к ликвации в слитках спокойной стали.

Литература

  1. Материаловедение / Ю.Т. Чумаченко, Г.В. Чумаченко. – Ростов н/Д: Феникс, 2005. – 320 с.
  2. Материаловедение / О.В. Травин, Н.Т. Травина. М.: Металлургия. 1989. 384 с.
  3. Металловедение / А.П. Гуляев. М.: Металлургия, 1986. 544 с.
  4. Материаловедение / А.М. Адаскин, В.М. Зуев. – М.: ПрофОбрИздат, 2001. – 240 с.
  5. Справочник молодого токаря-револьверщика / Е.О. Пешков. М., Высшая школа, 1966. 179 с.
  6. Справочная книга сварщика / А.М. Китаев, Я.А. Китаев. М.: Машиностроение, 1985. – 256 с.
  7. Материалы в приборостроении и автоматике: Справочник / Под ред. Ю.М. Пятина. – М.: Машиностроение, 1982. – 528 с.
  8. Общетехнический справочник / Под общ. ред. Е.А. Скороходова. – М.: Машиностроение, 1989. – 512 с.